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LOGISTICS MANAGEMENT INSTITUTEM

A Physics-Based Alternative to Cost-Per-Flying-Hour
Models of Aircraft Consumption Costs

AF909T1/AuGuUST 2000

Executive Summary

Operation Desert Storm (ODS) illustrated problems associated with proportional
models—based on computing a cost per flying hour (CPFH) for each fleet of air-
craft—to estimate wartime resource consumption. During ODS, these models
overpredicted the amount of materials consumed by more than 200 percent. Faced
with the requirement to develop realistic supplemental budgets for future contin-
gencies (such as Kosovo), the Assistant Secretary of the Air Force for Cost and
Economics asked LMI to study alternatives to the CPFH methodology.

We used C-5B data from ODS to formulate a physics-based model that considers
three separate failure modes:

¢ Dormant failures that relate to failures induced while an airplane is on the
ground (measured in terms of ground time)

¢ Cycle-induced failures from stress-inducing events that are not related to
how long the aircraft operates (measured in terms of sorties and takeoffs
and landings)

¢ Failures associated with operating time (measured in flying hours).

We verified the model with Kosovo-era data for the C-17 transport, the KC-10
all-purpose tanker, and the F-16C fighter. (The C—5B fleet did not fly a signifi-
cant wartime surge during Kosovo; therefore, we did not use it to verify our
model.)

Our analysis showed that the physics-based model significantly outperformed the
proportional CPFH model during surges; it performed at least as well as the pro-
portional model in all cases. Equally important, the physics-based model is more
robust than the CPFH model: Its accuracy does not degrade radically after a major
flight program change, whereas a CPFH model typically does. The physics-based
model] uses data from existing data sources and requires no specialized software
(other than a spreadsheet program such as Excel).
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Our investigation made an important discovery that will improve the accuracy of
physics-based and proportional models alike. Three of the four aircraft fleets that
we studied have a removals bathtub: In the first few years of service, a fleet ex-
hibits a gradual decrease in removals that cannot be explained by changes in flight
characteristics. As the fleet matures, this trend levels out. Beyond a certain age,
removals increase. This trend can last for several years. Current models do not
take these gradual trends into account, which can cause serious errors in fore-
casting resource consumption. Our study suggests an approach for incorporating
these trends in resource models. We need further study, however, to establish
rules for identifying these trends, estimating their magnitude, and determining
when they start and stop.

We suggest that the Air Force extend this important research program, focusing
on four areas:

& The current physics-based model has just four parameters. We should in-
vestigate whether the inclusion of additional parameters, such as accelera-
tions above a certain g-force or the use of afterburners, can improve the
model.

& The F-16C data from Aviano Air Base differ significantly from the full-
fleet data. Now that we know that the model is valid in general, we can
use it to investigate base-to-base variations.

¢ We used a linear shear transformation to adjust for removals bathtubs. Do
other transformations afford better results?

& We should develop software that automates the tasks of obtaining input
data, calibrating the model, and investigating the results. LMI has success-
fully developed several such applications to support other analyses.
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Chapter 1

Current maintenance models that are based on aircraft flying hours do not work
when flying behavior changes significantly. These proportional models predict the
maintenance needs of a fleet of aircraft on the basis of a simple scaling method.
They do not consider the physics of removal-causing failures; therefore, they can-
not accurately predict material consumption during periods of radically different
flight behavior (e.g., a wartime surge).

These proportional models compute a historical cost per flying hour (CPFH) for a
fleet of aircraft. To estimate future maintenance costs for that fleet, one multiplies
the historical CPFH by the estimated number of flying hours. On a basic level,
this idea makes sense: The more you operate any machine, the more likely it is to
fail. Operating time is only one cause of failure, however. For aircraft, stresses
from take-offs, landings, and other cycles also may cause failures. Failures may
occur even when the aircraft is at rest; exposure to humidity, temperature, and
dust can combine to make a part fail as the aircraft sits idle. These ground envi-
ronment-related stresses may be more damaging than flight-related stresses. This
fact has prompted some maintenance personnel to claim that aircraft can “heal
themselves” by flying more frequently.

WHY DOES THE PROPORTIONAL MODEL
SEEM TO WORK?

If failures that are unrelated to flying hours outnumber those that are related to
flying hours, why does the proportional model work at all? When nothing changes
in the way an aircraft flies (and rests) from one period to the next, it is perfectly
reasonable to use flying hours as a predictor for removal-causing failures. For that
matter, it is equally reasonable to use possession hours or landings. This is be-
cause, when flight behavior does not change, the failure rate from each potential
cause of failures remains constant. What happens, however, when flight behavior
does change?

WHEN THE PROPORTIONAL MODEL FAILS

When a fleet of aircraft significantly changes its flight behavior from one time
interval to the next, flying hours and the other factors that affect failures begin to
diverge. In a typical surge, for example, flying hours increase dramatically, but
landings remain about the same, and ground hours fall slightly. The proportional
model would remain valid if flying hours maintain a strong correlation with
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removals during the surge. Unfortunately, they do not. How bad can the problem
be? A proportional model predicted three times as many removal-causing fallures
for the C—5B during the Gulf War surge as actually occurred (see Figure 1- 1).!

Figure 1-1. Projected and Actual C-5B Removals, Before and During
Operation Desert Storm

C-5B On-Equipment Removals (Source: AF MODAS)
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For the C—5B, the Gulf War surge prompted a sharp reduction in the number of
landings per sortie and a sharp increase in sortie duration. Because flying hours
tripled, the number of events that can lead to an operational failure also tripled.
The number of landings remained constant, however, and the number of ground
hours was smaller: More flying hours mean less ground hours. Therefore, the
surging C-5B fleet experienced fewer events that could cause cycle-induced or
ground-induced failures. Because these events remained constant, overall remov-
als during the surge remained roughly at pre-surge levels.

A PHYSICS-BASED ALTERNATIVE

To be consistently accurate, a material consumption model must consider more
parameters than flying hours. It also must consider ground time and major stress-
inducing cycles. David Lee created a physics-based model that considered the
ground environment, flying hours, and take-off/landing cycles to predict

! We shorten “removal-causing failures” to “removals” for the remainder of this report.
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Introduction

removals.” He applied it to the same Gulf War C—5B data that confused the pro-
portional model. Lee’s model provided more accurate results than the propor-
tional model for the Gulf War surge (Figure 1-2).

Figure 1-2. Actual Removals with Proportional Model and Physics-Based Model
Developed by Lee

C-5B On-Equipment Removals (Source: AF MODAS)
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Lee’s approach clearly shows promise. The question that motivated this study was
this: Is implementation of this model throughout the Air Force feasible? The an-
swer is yes, if the following premises apply:

¢ The model applies to many aircraft and scenarios, not only to the C-5B in
ODS.

¢ Analysts can obtain data required to calibrate the model.

¢ Analysts can create or apply a simple computer tool to manage the data
and calibrate the model.

¢ Analysts can easily review and interpret model results.

2 David Lee, The Cost Analyst’s Companion, (McLean,VA: LMI 1997).
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In the remainder of this report, we describe the initial and final formulation of our
physics-based model and outline the method we used to validate it. We then
present one sample analysis each for a transport, fighter, and tanker. The exam-
ples show that our model performs better than the proportional model.
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Chapter 2
Development of the Model

We used Lee’s physics-based removal model as the foundation for our work.'
Lee’s model considers three input parameters:

& Take-off/landing cycles
¢ Ground hours
¢ Flying hours.

Other operating cycles may cause cycle-induced removals, but the model assumes
that their contributions are small.

The probability P, of a cycle-induced removal is
P =1-(1-P)1-P), [Eq. 2-1]

where P, is the probability of a failure during takeoff and P, is the probability of a
failure during landing. Cycle-induced failures follow a binomial distribution; that
is, the probability of m, failures in N cycles is B(m,, N, P.).

Lee proposes that flight-induced removals and ground-induced removals both
follow a Poisson process. Under this assumption, the number of flight-induced
removals produced in time #is a discrete Poisson distribution with parameter At;.
Similarly, the number of ground-induced removals produced in time #; has a dis-
crete Poisson distribution with parameter Agt,.

If the number of cycles, ground hours, and flying hours each is sufficiently large
to produce more than 100 removals, we can approximate each of the three distri-
butions above with a normal distribution. Using this assumption, the model pre-
dicts that the removals will have a mean of NP. + A¢ + Aoty and a variance of
NP (1 = Pc) + Asts + Mgty

! David Lee, The Cost Analyst’s Companion, (McLean,VA: LMI 1997).
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THE CURRENT PHYSICS-BASED MODEL

Further investigation prompted the research team to make two basic modifications
to the original model:

¢ We changed the ground-induced removals mechanism from a Poisson

process to a binomial process. The use of a binomial process here pre-
sumes that ground stresses—mainly related to temperature and humidity—
occur in a daily cycle. A Poisson process assumes that this environment
places a more-or-less constant stress on the aircraft. To convert ground
hours to daily ground cycles, we divided ground hours by 24.

We separated cold cycles (the initial take-off and final landing of a sortie)
from warm cycles (touch-and-goes). The distinction makes little or no dif-
ference in fighters because they seldom perform touch-and-gos, regardless
of their mission. Transports, however, may perform several take-offs and
landings per sortie during normal or training operations. Transports make
significantly fewer warm cycles during a surge, however. Separating cold
cycles from warm cycles allows for the possibility that the two events pro-
duce significantly different types and levels of stresses. More important,
the separation shows the strong relationship between cold cycles and fly-
ing hours in tankers and transports.

For the aircraft we discuss in this report, the original and modified models pro-
duce nearly identical results, although the mix of removals differs. The original
model tends to predict that the ground environment is the dominant cause of re-
movals. In fact, it often predicts that the ground environment causes 75 percent or
more of the total removals. The new model places ground-induced removals be-
tween 19 and 53 percent of the total. We believe that although the ground envi-
ronment is significant, it is not as significant as the original model predicts.

CRITICAL PARAMETERS

With these modifications, the four critical factors affecting removals are

2

*

ground hours + 24 (ground cycles or ground days),
flying hours,
warm take-off/landing cycles (warm cycles), and

cold take-off/landing cycles (cold cycles).
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Development of the Model

Ground Days

Let the probability that a ground cycle will cause a removal be P,. Let N, be the
number of ground days when a removal can occur. (N, = #,/24, where #, is the
number of ground hours.) If the failure mechanism follows the normal approxi-
mation to the binomial distribution, then the mean number of ground-induced re-
movals is NP, The variance is NP, (1 — P,).

Flying Hours

This model treats flying hour-induced removals the same way Lee’s original
model does. The number of flight-induced removals produced in time #is a dis-
crete Poisson distribution with parameter As;. Using the normal approximation to
the Poisson distribution, the mean and variance of flying-hour-induced removals
both remain Agt;.

Cold Cycles

With each sortie, the plane must start up its engines and other flight systems, take
off, land, and shut down. The start-up and shutdown processes introduce stresses
on the plane that may not be present in a warm (touch-and-go) take-off/landing
cycle; therefore, we separate these cycles from other landings and take-offs that
may occur during a sortie.

Each sortie begins with one start-up and take-off and ends with one landing and
shutdown. The number of sorties is equivalent to the number of cold cycles. Be-
cause each cycle is a potential removal-causing event, we model cold cycle-
induced removals with the normal approximation to a binomial distribution. If N,
is the number of sorties and P, is the probability of a removal per cold cycle, the
mean number of these removals 1S N..P.; the variance is NPoo(1=P¢.).

Warm Cycles

Warm cycles correspond to pairs of take-offs and landings that occur during a
sortie. Although they may not be as stressful as cold cycles, they may be a signifi-
cant cause of removals. This is especially true for transports; these planes may
average three or more warm cycles per sortie during peacetime. Fighters, on the
other hand, may have only a handful of warm cycles in a squadron for an entire
year. In this case, these cycles should be excluded from the model.

We also model warm-cycle-induced removals with the normal approximation to a
binomial distribution. If N,,. is the number of sorties and P, is the probability of a
removal per warm cycle, the mean number of these removals is N,,.Py.; the vari-
ance iS NyyePye(1 — Pyye).
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MODEL MEAN AND V ARIANCE

The mean and variance of total removals results from combining the means and
variances of each model parameter independently:

u=N,P +N P +N, P +A:1,. [Eq. 2-2]

¢ cc

*=N,P(-P)+N P (1A-F)+N,F, (=P, )+ Ast,. [Eq. 2-3]
A careful look at these equations shows one important constraint: because Ny, =
Niandings—Niorties and N = Niories, it is possible to express the model mean as

U=N,P 4N, (P =P )+ Nigings Puc + 451 - [Eq. 2-4]

som'es( ¢ we landings © wc

A negative probability of failure caused by sorties does not make sense. Thus, P..
must be constrained so that it is always greater than or equal to P,..

IMPLEMENTING THE MODEL

To calibrate the model, the analyst uses a set of calibration data that includes a set
of time intervals and the removals, sorties, ground hours, flying hours, and land-
ings that occur in each. The model computes a predicted set of removals for each
of these intervals, and an optimization routine computes the best fit between pre-
dicted and actual removals. The model variances vary from interval to interval
(i.e., they are intrinsically heteroscedastic), so we compute a maximum likelihood
estimator numerically, rather than by a least mean squares fit. (Lee provides a
mathematically rigorous discussion of the method; see Appendix.) The optimiza-
tion scheme may seem complex, but it is simple to set up and run on a single Ex-
cel spreadsheet, using the optimizer add-on.

PROPER USE OF THE MODEL

As with most physics-based models, the analyst must use it with appropriate care.
First, the calibration set should consider how to treat highly collinear parameters.
If two parameters are indeed collinear, the analyst should consider simplifying the
model to eliminate one of them or use a more sophisticated method, such as ridge
regression, to determine the principal components of the model. A mathematically
rigorous method to diagnose collinear parameters is beyond the scope of this proj-
ect. (It is sufficient to make this determination through visual inspection.)

Second, the analyst should select time intervals that are large enough to ensure
that each parameter will produce at least 100 removals. Because the model is a
linear combination of the four parameters, sorting predicted removals by their un-
derlying cause is easy, provided all four parameters are independent.
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Development of the Model

Third, the analyst must consider slow-developing, time-dependent trends in the
data. For example, three of the four aircraft we discuss in this report exhibited a
removals bathtub. In the first few years of service, a new fleet often shows a
gradual decrease in removals that cannot be explained by changes in flight char-
acteristics. As the fleet matures, this trend levels out. Beyond a certain age, re-
movals increase again. This trend can last for several years. Neither the physics-
based model nor the proportional model considers removals bathtubs. Failure to
remove these bathtubs from the data may reduce the accuracy of both models.

Ensuring Independent Parameters

If a fleet’s flying behavior varies little over time, the sortie duration, number of
landings per sortie, and number of flying hours per month will remain essentially
constant. In this case, discerning the independent effect of each parameter is im-
possible, and using one variable to predict removals is equivalent to using all of
them. When flying behavior changes, the parameters may respond independently.
Discerning the individual effects of each is then possible.

Even when flying behavior changes significantly, at least two of the four pa-
rameters may still behave similarly. In this case, we gain nothing by keeping both
parameters in the model. Because the two parameters are redundant, treating them
as separate inputs can be misleading: Although an optimizer will arbitrarily assign
failure probabilities to each, only their combined effect has meaning. In this
situation, we chose to eliminate one of the redundant parameters. This approach
makes the results easier to interpret. It also keeps the model as simple as possible,
thereby minimizing the computational load. Finally, by preserving the independ-
ence of the model’s parameters, we can enumerate predicted removals by their
source. This strategy enables us to see whether the normal approximation is valid
for the selected calibration set.

For the purposes of this study, a visual inspection is sufficient to check the pa-
rameters for collinearity. To make this inspection easier, we scale each of the four
parameters before plotting them. For example, if a fleet of aircraft flies an average
of 2,000 hours for a set of data and sees 1,000 ground cycles, ground cycles must
be multiplied by 2 to scale them to flying hours.

Our research has shown that cold cycles and flying hours often exhibit collinearity
when they are plotted this way (see Figures 2-1 and 2-2). The C-17 fleet’s flying
hours and cold cycles clearly are related; the F-16Cs at Aviano Air Base exhibit a
departure between these two parameters.

2 We discuss removals bathtubs in greater detail in Chapter 3.
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Figure 2-1. Strongly Related Flying Hours and Cold Cycles

Scaled Parameter Comparison: C-17
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Figure 2-2. Independent Flying Hours and Cold Cycles
Scaled Parameter Comparison: F-16Cs At Aviano AFB
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_Development of the Model

The tankers and transport planes we studied show a strong relationship between
flying hours and cold cycles; therefore, we chose to eliminate flying hours from
the model when we analyzed the C-5B, C~17, and KC-10. Eliminating cold cy-
cles would have been equally valid, but we retained cold cycles over flying hours
for two reasons:

& We believe take-offs and landings are more jarring than steady-state
flying.

¢ We want to show that a model can predict removals accurately without
using flying hours.

The F-16C showed very few warm cycles. Although these cycles are not collinear
with other variables, we eliminated them as a parameter because they were too
few to be a significant source of removals. Inspection of other fighter aircraft data
reveals that they make significantly fewer touch-and-goes than transports, which
leads to the conclusion that cold cycles should be eliminated in modeling all
fighters.

The limited scope of this study prevents us from taking a more than cursory ap-
proach to the issue of customizing the model for specific types of aircraft. With
further study, we would consider this issue with more scientific rigor. For the
purposes of this study, however, eliminating flying hours from the transports and
tankers and eliminating warm cycles from the F-16Cs makes the model easier to
calibrate and evaluate.

Choosing a Proper Time Interval

The analyst must consider one major trade-off in selecting the time interval. Too
small a cycle may provide too few removals to make the normal approximation
accurate. For example, if monthly data produce fewer than 100 ground cycle-
induced removals, the analyst should combine the data into bimonthly or even
quarterly time intervals. Too large a cycle may cancel important variations in the
data through an averaging effect. For example, suppose a group of aircraft under-
goes an intense, 3-month surge followed by a 3-month period of reduced flying
hours. With a 6-month time interval, these significant changes in flight program
might become indistinguishable from 6 months of normal flying.



If the time intervals cannot be set so that each parameter accounts for 100 remov-
als per interval, the analyst should consider the following alternatives:

o Use the binomial or Poisson distribution, as appropriate, rather than the
normal approximation, for any parameter that fails to meet the criterion.

& Eliminate the parameter if its contribution to the total removals is insig-
nificant.

& Use the normal approximation and accept a slightly less accurate result.

The fleets that we investigated all produced a sufficient number of removals to
allow the use of the normal approximation with monthly time intervals.




Chapter 3
Other Modeling Issues

The physics-based model accurately predicts removals, given physical data about
the number and types of take-offs and landings, the number of 24-hour ground
cycles, and flying hours. The model assumes that the likelihood of failures from
any one of these factors remains the same over time. The data show, however,
that for most aircraft the likelihood of failure does not remain constant over long
time intervals. Long-term trends—called removals bathtubs—vary the general
likelihood of failure. These trends affect the physics-based model and the propor-
tional model alike. In this chapter, we describe the removals bathtub and explain
how to correct both models for it.

The first step in computing an accurate material consumption cost is to create a
model that accurately predicts the number of removals. The second step is to
identify any physically explainable trends in the data that the model doesn’t treat,
and then correct the model for those trends. For this reason, we correct for remov-
als bathtubs. The third and final step is to convert the removals prediction into an
aggregate cost for material consumption. Because of limitations with the data, we
do not complete this step.1 In this chapter, we provide a general framework for
calculating a cost from predicted removals.

SLOW-DEVELOPING TRENDS—REMOVALS BATHTUBS

Figure 3-1 demonstrates the concept of a removals bathtub. For the first few
years, some fleets go through a period of declining removals. Maintenance chiefs
for the aircraft we discuss in this report suggest several reasons for this decline:

¢ Maintenance crews gain experience

& Manufacturers gain experience (when delivery is spread over several pro-
duction lots)

¢ The maintenance organization relaxes requirements after a “burn-in”
period

& Better written technical manuals result in less wasteful maintenance.

As the aircraft ages, removals creep up again—possibly because clearances and
voltages drift away from optimum values. Clearances and other such parameters
change over time as a result of cumulative wear, fatigue, and corrosion. These
problems force components to work harder, which hastens their aging.

! Data required for this calculation will be available soon.
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Figure 3-1. Removals Bathtub (exaggerated)

Removals

Time

Although the combination of causes may vary from fleet to fleet, we often see a
gradual rising or falling trend in overall removals over several years. Neither our
physics-based model nor a proportional model can explain these trends; both as-
sume that the aircraft’s reliability remains constant throughout the calibration pe-
riod and the estimation period. If the estimation period occurs several years after
the calibration period, this assumption may not be valid.

For example, the F-16C fleet exhibits evidence of an upward trend in removals
that cannot be explained by an increase in possession time, flying hours, or take-
offs and landings (Figure 3-2). As a result, a physics-based model produces a
relatively good fit in the calibration region (months 25 to 36, as indicated by the
box), but its accuracy becomes progressively worse in either direction from the
calibration set. Although the model captures the transient variations in the data, it
cannot predict the underlying steady-state increase in removals. The F-16 main-
tenance chief confirmed that the aging fleet has had rising removal rates for the
past several years because of its increasing age.
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Other Modeling Issues

Figure 3-2. Data Fit with Gradually Rising Trend in Removals
(calibration period: months 25-36)
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After such a trend is confirmed, the best response is to remove the trend from the
data, fit the model to the modified data, and apply the trend to the resultant
model.? If fatigue is the cause for the rise in removals, the data should follow a
slow exponential trend. (The true nature of this trend should be confirmed through
further study.) A gradual exponential can be approximated reasonably by a
straight line. This approach greatly simplifies the math required to transform the
model to fit the underlying trend. When a linear approximation is appropriate, the
following steps will transform the model:

1. Fit a trend line to the actual removals data and note its slope.
2. Perform a shear transformation on the actual data to remove the trend.

Mon’ = Mon

R’ = R—(Mon - Mon_)m [(Eq. 3-1]
Mon is the number of the current month (or the number of the time intervals cho-
sen). This number remains constant under the transformation. Mon, is the mid-
point at the center of the calibration set. In this case, Mon, = (25 + 36)/2 =30.5. R
is the number of removals for that month. The last term, m, is the slope of the
trend line.

3. Calibrate the model using the transformed actual data.

* George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, Time Series Analysis: Fore-
casting and Control, 3rd Edition (New York: Prentice Hall, 1994).
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4. To compute predicted removals from a set of known model parameters, com-
pute the model mean, then transform it using the following set of equations:

Mon" = Mon

R" =R+ (Mon—Mon_)m

Figure 3-3 shows how the model fits the F-16C data with this process.

Figure 3-3. F-16C Data Fit, Accounting for Underlying Rising Trend
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This technique will improve the accuracy of this model and a proportional model
alike. An analyst should be careful to identify and account for these trends, re-
gardless of the model the analyst uses.

ESTIMATING INPUT PARAMETERS

To use this model, the analyst must be able to provide reasonable estimates for
each of the input parameters that feed it. Analysts project flying hours now; with
the new model, they would need to continue to do so. Ground cycles are directly
related to ground hours at an operational unit. This value is as easy to estimate as
flying hours: If one knows a fleet’s expected flying hours and the number of air-
craft on hand, one also knows the fleet’s expected ground hours. Predicting land-
ing cycles should be relatively simple too, if the analyst knows how many sorties
the aircraft will fly in the given duration, what types of missions are expected, and
how many landings occur in a typical sortie of that mission type. One can ex-
trapolate these data from the Reliability and Maintainability Information System
(REMIS) database. An analyst with knowledge of the operational characteristics




Other Modeling Issues

of a given aircraft may be able to make a reasonable estimate solely on the basis
of experience.

RELATING REMOVALS TO COST

With a proportional model, computing a cost is trivial. By definition, the CPFH
model directly relates cost and flying hours. With a physics-based model, relating
the physical events that the model predicts (removal-causing failures) and their
cost is not as easy. For example, if a specific removable item costs 10 times as
much to replace as another and the model considers all removals to be the same,
how do we compute a cost?

The simplest way to do this calculation is to compute an average cost for a re-
moval and then multiply all of the predicted removals by that value. A CPFH
model implies this technique:

(FH)X(removals )x( cost )___ (FH)X(%JZ cost . [Eq. 3-3]

FH removal

A better way to compute a cost would be to calibrate the model to predict the
number of specific assemblies, subassemblies, or parts removed, rather than the
number of all removals. The model can predict the removals of a specific piece of
equipment just as easily as it can predict general removals; the analyst must sim-
ply substitute equipment-specific removals data for general removals data when
calibrating the model. The REMIS database provides this equipment-specific re-
movals data. Therefore, the analyst can

& predict the number of each part that will be removed, using projected fly-
ing hours, possession hours, and landing data for a given aircraft;

¢ multiply the number of each part’s removals by the average cost to replace
that part; and

¢ add the individual costs together to compute a total cost of spares for a
coming period.

More realistically, an analyst will run the model for the 10 or 20 items that are
most costly to remove. After performing the preceding procedure to compute a
combined cost for those parts, the analyst would then scale that number by a cer-
tain percentage to compute a total spares cost. For example, if 90 percent of the
cost of spares for a particular aircraft comes from 15 parts, the analyst would ob-
tain individual removals data on those 15 parts. Then the analyst would create a
model for each of those parts, use those models to compute a projected cost for
each, sum them, and multiply by 10/9 to compute a total projected cost for spares.

This modeling method assumes that the removed item is also replaced. Because
items often are removed for repair and then reinstalled, the analyst must



distinguish between items removed for replacement and items removed for repair.
Spares consumption data should relate more directly to costs than removals. The
model can be adjusted easily to predict consumption cost rather than removals.
Although we were unable to obtain this type of data for this study, we anticipate
that new Air Force Total Ownership Cost (AFTOC) data will have this informa-

tion.
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Chapter 4

For the model to be generally useful, it must apply to several types of military air-
craft. For brevity, we discuss the results we obtained in fitting the model to a rep-
resentative transport plane (C—17), fighter (F-16C), and tanker (KC-10). We
selected each of these planes to represent their class because they experienced at
least one sustained surge during recent years. These surges most likely were
caused by the Kosovo air campaigns. These surges are much smaller than that
shown in the ODS-era C-5B data, so the improvement over the flying-hour model
will be correspondingly less dramatic. The physics-based model still noticeably
outperforms the proportional model in each case.

Before we examine the Kosovo-era data, we examine the ODS C-5B data that
motivated this study. The C-17, KC-10, and F-16C data follow. We analyzed
each data set with the same approach:

¢ We scaled each individual parameter to identify any strong relationships
between them. We visually identified collinear parameters by using a
graph of the scaled parameters. We considered a more mathematically rig-
orous approach, such as correlation coefficients, but decided that visual
identification was sufficient given that this research is a feasibility study,
not an advanced investigation.

¢ When a strong relationship existed between two or more parameters, we
chose to eliminate redundant parameters. The analyst can choose a method
such as ridge regression that will allow all of the parameters to remain in
the model. Given the scope of this study, however, we decided against
using such advanced techniques.

& We compared the physics-based model and the proportional model
graphically, using the remainder of the data set, and comment on the
results.

We used four different calibration sets for each aircraft in the study. For the first
three calibration sets, we divided the data roughly into thirds to see how well the
physics-based model and the proportional model performed. We also chose a
fourth calibration set, which also included approximately a third of the data for
each aircraft. This fourth set included the months before the surge, along with
roughly the first half of the surge data. This set is the “best” calibration set for
both models, given the constraint of leaving roughly two-thirds of the data as test
data. It is best for the physics-based model because it guarantees that the aircraft
undergo at least two distinct operational patterns. If the aircraft never change their



operational pattern, all of the parameters will be roughly proportional to time, and
discerning their individual affect on removals is difficult. The calibration set is
best for the proportional model because it includes high-flying hour, low-
removals surge data with data from typical peacetime operations. As a result, the
proportionality constant is smaller, which means that the model will not overpre-
dict the surge time removals as grossly as it might if surge data were not included
in the calibration. Moreover, because the set includes non-surge data, the propor-
tionality constant does not become so low that the model will grossly underpredict
removals that occur during peacetime operations.

We call this fourth data set a “leading-edge” data set because it includes the first
half of the surge and the months that lead up to it. In the discussion that follows,
we focus on the leading-edge data set for two reasons: This set best represents the
spectrum of flying behaviors for the aircraft and the proportion of time spent do-
ing each. It also provides the toughest test for the physics-based model because
the proportional model tends to be most accurate for this calibration set.

In addition to showing the leading-edge calibration sets for all four aircraft, we
show the C-5B models calibrated on the first third of the data. This set most
clearly shows the disparity between the physics-based and proportional models
that motivated this study. We also show all four calibrations of the F-16Cs sta-
tioned at Aviano Air Base to provide an example of how the models vary with the
choice of calibration data. For the sake of brevity, we do not show the rest of the
calibrations. We show all four sets of the Aviano F-16Cs because this aircraft dis-
plays the strongest relationship between flying hours and removals; therefore, if
the proportional model can outperform the physics-based model, it will do so on
one of these four data sets.

We used two statistics to describe the differences between each model and actual
removals: the mean relative error and the root mean squared (RMS) relative error
during surge months. The relative error of a data point / is

E, =" [Eq. 4-1]

where P; is the predicted value for point i and O; is the observed value at point ..
The mean relative error of » data points is

n
2E.,
_ 1

M, [Eq. 4-2]

n
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Computing the RMS error of n data points involves squaring the relative error of
each point, taking the mean of the squared errors, and taking the square root of the
mean:

Z Er"lt’l
RMS, =| - . [Eq. 4-3]

n

Relative error measures how well the model matches the central tendency of the
observed data. It preserves the sign of the difference between a predicted and ac-
tual value; therefore, if the model overpredicts some data and underpredicts oth-
ers, the errors tend to cancel. A good model should match the central tendency of
the observed data closely, but it also should predict local peaks and valleys in the
data. RMS error is a measure of the average magnitude of the difference between
each predicted and actual value. It shows how well the model predicts these local
data variations. If the model consistently over- or underpredicts the data in a set,
the relative error and RMS error will have approximately the same magnitude.

Table 4-1 summarizes the results of each of the 16 model calibrations for the pro-
portional model and the new physics-based model. We discuss the initial physics-
based model (the Lee model) in the C-5B section for historical purposes, but we
do not include it in the table or in the discussions of the other aircraft fleets.

OPERATION DESERT STORM: C-5B

The research team obtained ODS-era data from the Air Force’s Maintenance and
Operational Data Access System for the months of March 1989 to March 1992,
inclusive. These 37 months of data show a surge for the months of August 1990 to
May 1991 (see Figure 4-1). During this time, flying hours typically were double
or triple the mean value before the surge. As a result, the proportional CPFH
model fails dramatically. Can the new model do better? To answer this question,
we evaluate each model’s performance individually, restricting our attention to
the mean relative errors for several regions of the data.

Figure 4-2—a graph of all four model parameters scaled to flying hours—shows a
strong topological similarity between flying hours and cold cycles. Although the
two variables have slightly different means in the pre-surge, surge, and post-surge
regions of the graph, they clearly are closely correlated. As we discuss in Chapter
3, we eliminated flying hours from the model for this reason.




Figure 4-1. C-5B Flying Hours Before, During, and After
Operation Desert Storm
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Figure 4-2. All Parameters Scaled to Flying Hours, Showing Strong Relationship
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Methods and Results

Cold cycles, warm cycles, and ground cycles appear to be uncoupled throughout
the data set. Thus, we can calibrate the model anywhere in the data set and expect
to see good results from a physics-based model. We describe two of the four cali-
brations we performed on this data: the calibration that used the first third of the
data and the leading-edge calibration. The leading-edge calibration includes the
10th through the 21st months—the 8 months before the start of the surge and the
first 4 months of the surge. For the C-5B only, we consider Lee’s original phys-
ics-based model and the new model that refines it. (Comparison of the two shows
why we chose the latter over the former.) For the other three aircraft discussed in
this report, we show only the new physics-based model. Figure 4-3 shows the
three different removal models overlaid on actual removals.

Figure 4-3. Removals Predictions for C-5B During
Operation Desert Storm (calibration period: months 1-12)
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Proportional Model

The proportional model follows the general trend in actual removals relatively
well before the ODS surge. In the first 5 months following the calibration year, it
underpredicts removals slightly, but not so much so that it differs significantly
from the other two models. During the surge, however, the proportional model
diverges from actual removals so badly that it dwarfs any other divergences in the
graph. The mean relative error shows that the proportional model overpredicts
removals for months 18-27 by 236 percent.

The proportional model also overpredicts removals by more than 100 percent for
the post-surge months—although it does not significantly underperform the other

45



two models for this period. Why do all three models perform so badly here? Sev-
eral possibilities exist:

& The relatively young C-5B fleet may have been experiencing a “left side
of the bathtub” reduction in removals, with the start masked by the war-
time surge.

& The Air Force may have flown or serviced these aircraft in fundamentally
different ways before and after their participation in the Gulf War. This
difference may be related to a physical effect that is not captured by the
parameters of any of the models.

& Removals may have been underreported, possibly because of a change in
reporting policy or a shift to a new maintenance reporting system.

Because of the age of the data, we cannot ascertain which of these causes contrib-
uted to the unusually low post-ODS removals. The C-5B maintenance personnel
we interviewed could not positively identify any one of the foregoing possibilities
as the true cause. Underreporting seems unlikely. A prevailing theory suggests
that no significant spike in removals occurred during the Gulf War because a
large amount of maintenance was deferred. If that were true, removals levels
would be elevated after the surge even with significant underreporting. In reality,
removals are depressed. It also seems unlikely that the planes flew radically dif-
ferently after the surge than they did before and during the surge. Neither the data
nor the maintenance personnel we interviewed suggest this possibility. The re-
maining possibility—a removals bathtub—seems to be the most likely scenario.
Although the surge obscures the trend, there is a gradual decline in removals
across the entire data set. We investigate this possibility later in this section.

The mysterious post-surge decline in removals aside, the proportional model fails
spectacularly when we use the first third of the data as the calibration set. If we
include some of the surge in the calibration, we could expect to do better. The
leading-edge calibration set tests that hypothesis.

The proportional model fails for the leading-edge calibration as well (see Figure
4-4). The mean relative error shows that the proportional model overpredicts re-
movals for the 10 months of the surge outside the calibration data by 109 percent.
The disagreement between the model and the data is much smaller than for the
previous calibration because it includes a few months of surge data in the calibra-
tion set, which effectively shifts the entire model down. Unfortunately, this same
effect causes the model to underpredict the months before the surge: The mean
relative error is —39 percent. The model does manage to fit the post-ODS remov-
als better than the physics-based models; it overpredicts post-surge removals by
26 percent. This result is just a happy accident. The proportional model grossly
underpredicts the data before the surge, and one expects it to grossly underpredict
the data after the surge as well. Because the post-surge removals are much lower
than expected, the model manages to fit the data reasonably well.
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Figure 4-4. Removals Predictions for C-5B During
Operation Desert Storm (calibration period: months 10-21)
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The proportional model does work better when we remove the bathtub trend from
the data (see Figure 4-5). Before the surge, the proportional model underpredicts
the actual data by an average of 29 percent per period. During the surge, it over-
predicts the data by 94 percent. After the surge, it underpredicts the data by 25
percent. Treating the removals bathtub improves the model before and during the
surge by 10-15 percent. The model does not improve after the surge—but only
because the bathtub in the untreated case happened to coincide with an expected
underprediction. Overall, the fit is significantly better.
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Figure 4-5. Fit of Models to C-5B Data After Treating Bathtub Trend
(calibration period: months 10-21)
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A return to the first calibration set also shows some improvement. Before the
surge, the error slipped from —2 percent to —6 percent, but during the surge it im-
proved from +236 percent to +203 percent. After the surge, the error improved
dramatically: from +103 percent to +24 percent. The extremely high errors during
the surge show that although we can expect better accuracy when we treat a re-
movals bathtub, this improved method alone cannot compensate for the short-
comings of the proportional model. Physics-based models can correct these
shortcomings.

Initial Physics-Based Model

To provide continuity to the study and show how it has evolved, we included the
original removals model developed by Lee in the C-5B analysis. Like the current
model, Lee’s original model shows a major improvement over the proportional
model. Lee’s model does not vary significantly from the current one in overall
trend; it does differ, however, in its underlying physics:

¢ Lee models ground environment-induced removals as a Poisson process,
based on ground hours, rather than as a binomial process based on ground
days.

¢ Lee’s model includes flying hours. We have removed flying hours from
the current model for the C—5B because of the strong correlation between
flying hours and warm cycles.
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¢ Lee lumps all take-off and landing cycles together; his model makes no
distinction between cold cycles and warm cycles.

Lee’s model has the following form:

u=At, +N.P +21, [Eq. 4-4]
0’ =At, +N.P.(1-P)+ A1, [Eq. 4-5]

Ag and A are the Poisson coefficients for ground-induced and flying-hour-induced
removals, respectively. P. is the probability of a removal because of a take-off or
landing cycle.

Calibrating this model on the first year of data yields kg =0.0523, P, =0.0527,
and A¢= 0. Lee’s model predicts that flying hours have no effect on removals. In
part, this occurs because landings and flying hours are somewhat correlated. Nev-
ertheless, the results clearly demonstrate that ground hours and landings are major
removal-causing factors: Ground hours account for 92.1 percent of the removals
predicted, and landings account for 7.9 percent.

The physics-based model has a mean relative error before the surge of 2.1 per-
cent—only slightly better than the proportional model. During the surge, how-
ever, the physics-based model remains accurate: It underpredicts the data by 22
percent, whereas the proportional model overpredicts the data by 203 percent.
After the surge, the physics-based model also does slightly better: It overpredicts
the data by 14 percent, whereas the proportional model overpredicts the data by
24 percent.

The second calibration set yields a slightly different set of results: A, = 0.0455,
P.=0.0766, and A¢ = 0.0303. Thus, ground hours account for 80.2 percent of pre-
dicted removals, landings account for 11.7 percent, and flying hours account for
8.1 percent. The change in calibration region has only a minor effect on the out-
come of the model, despite the major change in flying hours in the second cali-
bration data set. This finding suggests that the physics-based model is more robust
than the proportional model.

The physics-based model again significantly outperforms the proportional model.
Pre-surge, its mean relative error is +7 percent, compared with —29 percent for the
proportional model. During the surge, its mean relative error is +3 percent, com-
pared with 94 percent; after the surge, its mean relative error is +32 percent, com-
pared with —25 percent.

The New Physics-Based Model

Through comparison, we see that differences in assumptions between the current
model and the original model have only a minor effect on the C—5B results. Both




physics-based models are superior in accuracy to the proportional model, and both
are more robust. The two physics-based models allocate predicted removals dif-
ferently, however. Calibrated on the first year of data, the new model predicts that
the ground environment accounts for 45.3 percent of removals, warm cycles ac-
count for 31.8 percent, and cold cycles account for 22.9 percent. These results dif-
fer significantly from those of the original model, although there is only a small
difference in the predicted total outcome (Figure 4-5). The same is true for the
second calibration set. The new model predicts that the ground environment ac-
counts for 37.8 percent of the removals, warm cycles account for 37.1 percent,
and cold cycles account for 25.1 percent.

The new physics-based model also is more accurate than the proportional model.
For the first calibration set, the new model’s mean relative errors are —3 percent
pre-surge, —15 percent during the surge, and +36 percent post-surge. For the
leading-edge calibration set, its mean relative errors are +12 percent pre-surge,

—4 percent during the surge, and +9 percent post-surge. The original physics-
based model predicts that the ground environment causes more than 80 percent of
the removals in both calibration regions, yet the two models differ little in accu-
racy (Figure 4-5). Although we cannot discern which model more closely repre-
sents the physics involved (that is beyond the scope of this study), we feel that the
original model places too much emphasis on the ground environment.

Neither physics-based model performs as well post-surge as pre-surge; the errors
remain reasonably small, however. An additional issue, such as a major reduction
in cargo weight, may be responsible for the additional reduction in removals. The
C-5B has chronic reliability problems; therefore, one might reasonably speculate
that they flew a more conservative flying regime after ODS to preserve their mis-
sion readiness. Although we could not confirm this hypothesis directly from C—
5B maintenance personnel, F~16C and C-17 personnel suggested that cargo load-
ing (or weapons configuration for fighters) can significantly affect removals. Al-
though the C-5B data can do no more than raise these questions, we think
investigating them further with more recent, complete data would be useful.

Kosovo: C-17, KC-135, F-16C

The C—5B data from ODS show an obvious, significant surge that clearly high-
lights the potential of the physics-based model. Because of the age of the data,
however, we had doubts about the data’s accuracy. Furthermore, the lack of
maintenance personnel with first-hand knowledge of the fleet during ODS makes
reaching definitive conclusions about the models difficult with these data alone.
We used more recent data from Kosovo to confirm that the physics-based model
is more accurate than a proportional model. We chose a transport, a trans-
port/tanker, and a fighter to show that the model applies to a variety of aircraft.
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Smaller Surges, Tougher Tests

Before discussing the remaining three aircraft, we must comment on the differ-
ences between the ODS data and the Kosovo/Bosnia air operations. The ODS
C-5B data show an obvious surge in flying hours and an unmistakable change in
flying behavior: Sortie duration increased, and the number of warm take-offs and
landings decreased. Obviously, a model that uses flying hours alone is inadequate.
Any surges associated with Kosovo are tiny by comparison. Differences in flying
behavior also are not as noticeable (Figure 4-6). Surges that do exist are further
obscured by the fact that only small portions of a specific fleet of aircraft may
have participated in them. These factors make Kosovo data a much tougher test
set for the physics-based model than ODS data.

Figure 4-6. Comparison of Operation Desert Storm (C-5B) and
Kosovo (C-17) Surges

12000

——C-5B Flying Hours (ODS)
-#~(-17 Flying Hours (Kosovo)

10000

8000

6000

Flying Hours

4000

2000

0 T T T T T T
0 5 10 15 20 25 30 35

Month

We obtained flying hour, sortie number, landing, removal, and possession hour
data for more than 100 aircraft variants from the REMIS database. We originally
planned to use the AFTOC management information system as the source for
monthly usage and cost data on depot-level repairables. Because the AFTOC
system is relatively new, however, it lacks sufficient component-level historical
data in its database for our purposes. As an alternative to AFTOC, we used the
REMIS database. REMIS provided 3- to 5-year histories of the monthly on-
equipment component removals for all Air Force aircraft. It also provided the
other data we needed for the study—flying hours, sorties, landings, and possessed
hours.
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Of the aircraft we investigated, only a handful showed a meaningful surge. What
exactly is a surge? At first, the answer seems obvious: a significant elevation in
flying hours over a given time period. Contriving an example for which this crite-
rion alone does not define a surge is easy, however: The number of aircraft could
increase in proportion to flight hours, for example. Flight behavior also should
change. For aircraft that typically perform touch-and-go as a regular part of
training (transports and tankers), the number of warm cycles per sortie should de-
cline during a wartime surge. Other aircraft should see sortie duration rise.

These qualitative guidelines do not translate directly into quantitative rules. We
identified significant surges by scaling all four model parameters to flying hours
and loosely applying the following guidelines:

& The flying hour-to-ground hour (FH/GH) ratio rises by 30 percent
[(FH/GH)scaled 2 13]

& The warm cycles-to-cold cycles (WC/CC) ratio falls by 30 percent
[(WC/CC)scarea < 0.7] or, if warm cycles are insignificant, sortie duration
rises by 30 percent.

& The data set must sustain these values continuously for about 3 months or
more.

The first criterion ensures that flying hours show a sustained rise beyond any ex-
pected increase because of increased fleet population. The second criterion en-
sures that the fleet’s operational focus has shifted from training and readiness to
patrolling and combat. The third criterion ensures that the maintenance activity
has time to react to the surge and reach a new steady-state level. With a very short
surge, maintenance crews have the option to defer maintenance or cannibalize
more, with the possible result that most removals caused by the surge would not
take place until after the surge. These criteria may be relaxed somewhat if the
surge occurs during a known peacekeeping operation. For example, all of the
surges discussed below correspond to Operation Allied Force/Noble Anvil.

Because the Kosovo operations lack the scale of ODS, very few aircraft fleets
showed a significant surge during this period. The C-5B, for example, lacked a
surge that meets the three minimal criteria. Its deteriorating reliability record also
suggests that the fleet has radically different operational characteristics today than
it did 10 years ago. We therefore analyzed the C-17’s Kosovo-era data instead.
Fighters also posed a problem: No fighters showed a significant surge at the fleet
level. Therefore, we narrowed our focus to the F~16Cs stationed at Aviano Air
Base in Italy.

Transport: C-17

We requested C—17 data from January 1994 to the present. The REMIS database
provided 30 months of reasonably good data for the fleet, beginning with May
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1997. Before that, the database provides no removals data. The data for December
1997 lacked removals, so we dropped this point from the analysis. The data show
a surge from April through June 1999. These months correspond to months 24-26
in the scaled parameter comparison chart in Figure 4-7.

Figure 4-7. Comparison of Model Parameters for C—17
(all parameters scaled to flying hours)
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The parameter comparison shows two items of interest: There is strong coupling
between flying hours and cold cycles throughout the data set, and warm cycles
skyrocket in the four most recent months of the data set. A strong relationship
between flying hours and cold cycles is typical of transports and tankers. The sec-
ond observation is more interesting: What is its cause, and what effect will it have
on the model?

The leading-edge calibration set starts at 8 months before the surge and includes
all months up to the second month of the surge (months 16-25). The results show
that the physics-based model performs slightly better than the proportional model
before the surge, much better during the surge, and worse after the surge, when
warm cycles are high (Figure 4-8). This apparent disagreement between the model
and the data prompted the research team to investigate further.
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Figure 4-8. Model Comparison for Kosovo-Era C-17 Data
(calibration period: months 16-25)
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Further investigation shows that the McChord Air Force Base reserve unit is re-
sponsible for a disproportionate number of warm cycles in these months.
McChord received its first C~17 in July 1999 and had only 5 of 56 C-17s in serv-
ice by the end of November 1999. During that time, the planes performed more
than four warm cycles per sortie; the full fleet performed about 1.7 warm cycles
per sortie. The C—17 maintenance chief revealed that the McChord reserve unit is
undergoing a rigorous training program to familiarize pilots with the new C-17s.
That program is responsible for the dramatic increase in touch-and-gos. If these
cycles are less stressful on the planes—perhaps they are not loaded, as is custom-
ary for transports during training missions—then the physics-based model would
generate artificially high results during those months. The C-17 maintenance chief
confirmed that these training missions do not typically involve a full load. (Air
Force C—17s typically carry a full load when training.)

To test this hypothesis, we applied the full-fleet model to McChord’s C-17s. The
model predicted 30 percent more removals than these aircraft actually incurred.
When we reduced the probabilities of failure caused by warm and cold cycles by
40 percent, the model tracked reasonably well with the McChord data. The differ-
ence is not enough to account for the drop in removals in the later months of the
overall data set.

The removals bathtub discussed in Chapter 3 explains the drop in removals. This
conclusion is not immediately obvious because overall removals per month seem
to rise or remain constant for most of the data set. We expect a young fleet such as
the C—17s to show a drop in removals, but the C—17 fleet has expanded continu-
ously for the past several years. If all else remains equal, fleet expansion would
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make the removals rate rise proportionally. By comparing a trend line of ground
cycles data (which closely follows the number of aircraft over time) to a trend line
of actual removals data, we can see that actual removals rise significantly slower
than expected. The removals bathtub explains this result. We eliminated the
bathtub trend by using a similar technique to that outlined in Chapter 3 and com-
pared them to the removals models (Figure 4-9).

Figure 4-9. Model Comparison of Kosovo-Era C-17 Data:
Bathtub Trend Removed (calibration period: months 16-25)

1200

~+— Removals
—#-~ Physics-Based Model Projected Removals
Proportional Model Projected Removals

10007

800

2
Son g T
B2 R

Removals
(o]
o
(=)

400

200

0 5 10 15 20 25 30 35
Month
As expected, both models fit the data better. The only region of noticeable differ-
ence is during the 3 months of the surge: The physics-based model outperforms
the proportional model. The difference is not nearly as great as that with the ODS
data, but in view of the relative sizes of the surges, that result is not surprising.
The physics-based model provides an important advantage in this case: Its three
parameters give it the flexibility to react to the data better than the single parame-
ter of the proportional model. For the last 6 months of data, the physics-based
model not only fits the data better than the proportional model, it also matches the
topology of the model better. Because of this additional flexibility, the physics-
based model does not diverge from the data when the fleet undergoes a period of
elevated flying hours.

Tanker: KC-10

The REMIS database provided reasonably good data for the requested period of
January 1994 to the present—except that October 1994 had a questionably small
amount of removals and November and December had no removals. We believe
that these three data are errors, and we removed them. The scaled parameter graph
shows a surge for the months of April to June 1999 (see Figures 4-10 and 4-11).
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The data do not strictly follow our surge definition criteria: The WC/CC ratio is
not less than or equal to 0.7 for June. Warm cycles are extremely variable
throughout the data set, however, in comparison with the other aircraft in this
study. Moreover, the months correspond to Operation Allied Force/Noble Anvil.
These factors make us feel confident that the physics-based model would show an
advantage over the proportional model despite the absence of a surge that meets
our criteria.

Figure 4-10. KC-10: All Parameters Scaled to Flying Hours
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Figure 4-11. KC-10: Operation Allied Force Surge (detail)
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Methods and Results

As before, cold cycles and flying hours are closely correlated; therefore, we re-
moved flying hours from the model. In accordance with our method of using one
third of the data to calibrate the models, we chose to calibrate on months 45-64
for these data. That calibration set includes the first month of the surge and the

19 months prior to that. The physics-based model clearly outperforms the propor-
tional model during the surge period (see Figures 4-12 and 4-13).

Figure 4-12. KC-10: Model Comparison with Actual Removals
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Figure 4-13. KC-10: Model Comparison with Actual Removals (detail)
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The ground environment accounts for 39.4 percent of total predicted removals;
cold cycles account for 20.2 percent, and warm cycles account for 40.4 percent.
The physics-based model provides little, if any, improvement except during the
surge. The proportional model’s mean relative error is 62.5 percent during the
surge, and its RMS error is 62.8 percent. These numbers are similar because the
model consistently overpredicts actual data during the entire surge. The physics-
based model’s average relative error is 14.4 percent during this time, and its RMS
error is 18.6 percent. These numbers also indicate that this model overpredicts the
data, though not nearly to the extent that the proportional model does.

Fighter: F-16C

The F-16C has been a stalwart in the Bosnia/Kosovo air campaigns, but we can-
not recognize a surge in the past 6 years of data. The F-16C fleet is so large that
only a small portion supported these campaigns at any one time; therefore, no no-
ticeable change in flight behavior exists fleet-wide. F~16Cs assigned to Aviano
Air Base have flown many Kosovo missions. Consequently, they show a signifi-
cant surge during the months of March to June 1999 (Figure 4-14). Unlike the
tankers and transports, the F-16C fleet performs practically no touch-and-gos.
Therefore, there are too few warm cycles to include in the model. Cold cycles still
appear to be highly coupled with flying hours for most of the data set, though
some topological differences exist. This is particularly true during the surge. Cold
cycles rise for 3 months, whereas flying hours peak, then fall. For this reason, we
keep flying hours in the model.

Figure 4-14. F-16C (Aviano): Scaled Parameter Comparison

1400

—&—Scaled Ground Hours
1200 +— Scaled Flying Hours
~#¢- Scaled Cold Cycles

1000

800

Value

600

400 4

200

Month

4-18




Methods and Results

As with previous data sets, one month (January 1999—month 47 in the set) has
missing removals data. We removed this point from the analysis.

In keeping with previous analyses, we selected a calibration range that includes
about one-third of the total data and half of the surge. The 20-month calibration
range, which starts 18 months before the surge and ends 2 months into the surge,
leaves 40 months of data for the test range. The proportional model looks rela-
tively good for this data set (Figure 4-15). The increase in flying hours corre-
sponds to a large increase in removals, so the proportional model has some
validity. Without a large number of warm cycles to generate stresses on the plane,
the stresses of steady-state flight account for considerably more removals than
otherwise. Nevertheless, the mean relative error shows that the proportional
model overpredicts actual removals during the surge by 18.8 percent The physics-
based model overpredicts the number of removals by 3.1 percent. The propor-
tional model’s RMS error is 25.7 percent, whereas the RMS error of the physics-
based model is 12.0 percent. From the RMS numbers, we can see that both mod-
els capture the shape of the removals curve reasonably well. The proportional
model’s overprediction of the magnitude of the curve inflates its RMS error to
twice that of the physics-based model, however.

Figure 4-15. F-16C (Aviano): Model Comparison with Actual Removals
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The physics-based model predicts that flying hours is the dominant parameter af-
fecting removals for Aviano F-16Cs: It accounts for 72.6 percent of removals.
Although the ground environment plays somewhat less of a role than it does with
the C—17 and the KC-10, it remains a significant source of predicted removals; it
accounts for 19.2 percent. Cold cycles account for only 8.3 percent of predicted
removals. This result suggests that the lighter fighter undergoes relatively less
stress during landings and take-offs than its heavier counterparts.
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CALIBRATION RANGE STUDY

The foregoing analysis focuses primarily on leading-edge calibration sets, which
include about one-third of the available data and about one-half of the surge data.
These data sets give the physics-based model the maximum opportunity to iden-
tify the effect of each parameter, and they give the proportional model a chance to
average surge data with non-surge data. Therefore, both models usually are more
accurate than they would be if the set had no surge data. Analysts who would use
these models are not interested, as we are, in calibrating a model with only part of
the available data, however. Analysts would use all of the available data to predict
removals in upcoming months or years. They may not have the luxury of a no-
ticeable surge in their data. How do the models behave with different calibration
sets? To earn our complete confidence, the physics-based model must be able to
perform as well as the proportional model regardless of the calibration data. It
must be robust.

The two different calibration sets from the C-5B discussion suggest that the
physics-based model is robust. To confirm this hypothesis, we divided each air-
craft’s data set into thirds and calibrated each subset. The results of this exercise
appear in “Summary of Results” (below). The Aviano F-16C data sets, because of
their relatively high correlation between flying hours and removals, provide the
most stringent test of the robustness of the physics-based model; therefore, we
discuss the results in detail here. We calibrated on the first 20 months, the middle
19 months (excluding a point with missing removals data), and the last 20 months
of the Aviano F-16C data set.

For the first 20 months, the two models perform comparably well. The mean rela-
tive error shows that the proportional model overpredicts the 4 months of the
surge by 23.5 percent, whereas the physics-based model under-predicts removals
by 24.0 percent during the same period. The RMS errors also agree closely; the
proportional model’s RMS error is 29.7 percent, whereas the physics-based
model’s is 24.7 percent.

During the second 20 months, the physics-based model is the clear winner. The
proportional model overpredicts removals by 25.4 percent, whereas the physics-
based model underpredicts removals by 1.8 percent. The proportional model’s
RMS error is 31.5 percent; the physics-based model’s is 10.3 percent. For the
third 20 months, the surge lies entirely in the calibration set. Thus, this set pro-
vides, for both models, the most accurate approximation of actual surge removals
of the three sets. The proportional model still overpredicts removals considera-
bly—by 14.2 percent, in contrast to a 1.2 percent underprediction by the physics-
based model. The proportional model’s RMS error is 22.1 percent; the physics-
based model’s is 9.8 percent.

Clearly, the physics-based model does no worse than the proportional model for
any of the calibrations sets used. Most often, it does noticeably better. Because
flying hours play a significantly more important role with fighters than with
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transports and tankers, we think that a surge the size of the C-5B’s ODS surge
would not cause as great a discrepancy between the proportional model and actual
removals. Based on the four calibrations we performed, however, we believe that
the difference would remain significant—and that the physics-based model would
remain better.

AVIANO AND THE FULL F-16C FLEET

The F-16Cs stationed at Aviano Air Base do not show an increasing removals
bathtub trend, whereas the entire F—16C fleet does over the same time span. We
do not know for certain why this is true. The F-16C/D maintenance chief con-
firmed that the fleet as a whole has seen a steady rise in removals. Aviano’s F-16s
may not share this steady rise because of one or more of the following factors:

¢ They may be younger than the full fleet. We could not confirm whether
this is the case.

¢ They are all Block 40 airplanes. Removals characteristics may vary by
block number.

¢ Avianois a U.S. Air Force Europe base. As such, its F-16 squadrons re-
ceive the highest-priority maintenance. The extra attention may keep those
planes newer longer.

The relative number of removals predicted for both populations is essentially the
same. The Aviano F-16C model predicts 19.2 percent ground-induced removals,
8.3 percent cold cycle-induced removals, and 72.6 percent flying hour-induced
removals. The total F-16C fleet model predicts 20.1 percent ground-induced re-
movals, 6.4 percent cold cycle-induced removals, and 73.4 percent flying hour-
induced removals. This similarity in the relative importance of factors affecting
removals suggests that the two populations are similar (e.g., one does not have a
more reliable engine than the other does) but have different ages.

SUMMARY OF RESULTS

Our study considered ODS data for the C-5B and Kosovo-era data for the C-17,
KC-10, and F-16C. We calibrated the physics-based model and the proportional
model on four subsets of the data for each aircraft. This procedure provided 16
calibration sets to compare the performance of the two models. For the first three
calibrations of each aircraft, we divided the data into three approximately equal
subsets. For the fourth calibration, we chose a “leading-edge” subset of data to
calibrate. That is, we included (roughly) the first half of the data from a surge, as
well as a sufficient number of months directly preceding the surge to provide a
calibration set of approximately the same size as the first three sets.

We used two different statistics to measure the accuracy of each model in relation
to actual removals: relative error and RMS error. Relative error preserves the sign
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of the difference between model removals and actual removals; therefore, this
statistic measures how well the model follows the central tendency of the data.
The RMS error provides a relative measure of the magnitude of the difference
between the model and actual removals. Therefore, this statistic measures how
well the model follows the actual data at each individual data point.

The results of the trials described above appear in Table 4-1. The physics-based
model consistently predicts removals during wartime surges more accurately than
the proportional model. The proportional model is sensitive to the size of the
surge. When the C-5B experienced a 200-300 percent rise in its flying hours, the
difference between predicted and actual removals rose correspondingly. When
Operation Allied Force prompted a 30—60 percent rise in flying hours in the four
planes we studied during that time, the proportional model typically was off by
20-30 percent. The proportional model also showed significant sensitivity to the
calibration subset: If the subset includes a part of the surge, the proportional
model will better predict removals in the rest of the surge. (See C-5B calibration
sets 1 and 4 in Table 4-1.) It will also underpredict removals for all months of
normal flying. If the surge is large enough, this underprediction is quite large.

Table 4-1. Predicted Removals by Model Parameter and Comparison of
Proportional and Physics-Based Models During Surges

Predicted removals Proportional Physics-based
by model parameter (%) model model
RMS RMS
Aircraft Cal. | Ground Cold Warm Flying Relative relative Relative relative
set cycles cycles cycles hours error error error error
Cc-5B° 1 49.0 25.3 25.7 0.0 203 212 -15.3 221
2 32.8 27.0 40.2 0.0 42.4 51.6° 1.0 18.6
3 30.6 62.7 6.7 0.0 65.9 73.7° 14.6 25.2
4 37.6 25.2 37.2 0.0 94.4 102.3° -4.24 18.38
c178 1 49.9 39.6 10.5 0.0 24.0 25.5 -2.1 4.5
2 33.8 40.7 25.5 0.0 38.5 39.4 8.5 9.3
3 64.0 35.3 7 0.0 16.6 17.8 .02 .03
& 53.3 23.4 232 0.0 22,6 23.7 2.4 3.1
KC-10 1 22.8 34.2 43.0 0.0 72.9 73.1 13.6 17.6
2 36.0 27.4 36.6 0.0 62.0 62.1 11.1 15.5
3 47.0 17.7 35.3 0.0 62.7 62.9 15.8 19.6
4° 39.4 20.2 40.4 0.0 62.5 62.8 14.4 18.6
F—16C 1 53.0 0.0 0.0 47.0 23.5 29.7 -24.0 24.7
(Aviano 2 29.8 0.0 0.0 70.2 25.4 31.5 -1.8 10.3
AB) 3 32.6 0.0 0.0 67.4 14.2 221 -1.2 9.8
4 19.2 8.3 0.0 72.6 18.8 25.7 341 12.0
{-;:)60“ 1 20.1 6.4 0.0 734 N/A N/A N/A N/A

Note: N/A = not applicable.
2«Bathtub” trend identified and removed.’

b« eading-edge” calibration set.

° Proportional model significantly underpredicted actual data for these calibration sets.
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In addition to being more accurate, the physics-based model is more robust than
the proportional model. (See C—5B calibration sets 1 and 4 in Table 4-1.) Al-
though it is best to include at least part of a recognizable surge in a calibration set,
the model performs well even when the calibration set has no surge data. At
worst, the model performs comparably to the proportional model; on average, it
performs better.

A closer look at the data reveals that each of the four model parameters may have
a significant effect on the outcome, depending on the type of aircraft. It is imme-
diately apparent that the ground environment has a significant effect in all cases,
as many maintenance personnel have suspected. Warm cycles are particularly im-
portant for transports and tankers. This finding suggests that the key parameter to
consider in maintaining these types of aircraft is the number of landings, not the
number of flying hours. Warm cycles do not cause significant removals in fighters
simply because fighters seldom perform touch-and-gos: One sortie almost always
means one take-off and one landing.

Because cold cycles and flying hours most often are closely related, understand-
ing their effect on removals is more difficult. For tankers and transports, we
eliminated flying hours from the model because flying hours and cold cycles track
too closely to be discernable as separate effects. In view of the limited scope of
this investigation, we did not feel that the use of advanced statistical methods to
determine their individual effects on removals was warranted. As a result, remov-
als from cold cycles actually indicate the combined effects of cold cycles and
flying hours. We know that warm cycles and cold cycles have approximately the
same probabilities of failure for these aircraft. We would expect the probability of
a cold cycle-induced failure to be much higher if flying hours had a significant
effect because flying hour-induced failures are implied in the cold cycle portion of
the model. Based on that reasoning, flying hours probably have a more pro-
nounced effect on the KC-10 than on the C-5B and C-17. Further investigation is
required to confirm this hypothesis.

Clearly, flying hours are a significant source of failures in the F-16C. Cold cy-
cles—and take-offs and landings in general-—do not affect fighters nearly as sig-
nificantly as they affect the heavier, less maneuverable transports and fighters. In-
flight cycles, such as turning on afterburners, may be a significant source of fail-
ure-causing removals in these planes. This hypothesis should be investigated in
future work.
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Chapter 5

The ability to obtain required performance data is a crucial issue; in general, ob-
taining data can be the hardest part of any analytical task. Unless analysts can find
the data required to calibrate the model, the model isn’t feasible. We have found
that the REMIS database is an acceptably reliable source for required data. Ob-
taining the data was relatively easy after we completed the initial administrative
process. Air Force analysts could obtain these data even more easily. If analysts
want to update the model regularly and periodically, automating the process and
reducing the time from a few days to a few hours would be straightforward. In our
experience, the database generally offered complete data; a few suspect points
were easy to spot, and their removal did not affect the model’s calibration.

New data available from AFTOC will be easier for cost analysts to obtain and
use. We also expect that this database will provide detailed, complete financial
information. With these data available, implementing a model that computes ma-
terial consumption costs directly from the model’s input parameters is feasible.

The model’s physics and implementation make it easy to understand and use. It
uses two simple algebraic expressions that relate the four inputs to an expected
removals value and a variance about that value. The user calibrates the model by
performing a maximum likelihood estimation on the data. The user can do this
calibration in a matter of minutes with a spreadsheet that has an appropriate opti-
mizer add-on. With additional, one-time effort, automating this process would be
possible as well.

We found that many data sets have at least one pair of collinear parameters. In
these cases, we have found that eliminating one of the collinear parameters and
calibrating the data with the remaining three is adequate. For tankers and trans-
ports, we found that eliminating flying hours from the model provided the best
results. For fighters, flying hours appear to be a dominant cause of removals, but
warm cycles are too few to have significance. Therefore, we modified the phys-
ics-based model for tankers and transports to include ground cycles, warm cycles,
and cold cycles. For fighters, we modified it to include flying hours, ground cy-
cles, and cold cycles.

Three of the four planes we studied showed a long-term rising or lowering trend
in removals. Neither the proportional model nor the physics-based model properly
addressed these removals bathtubs. This study showed that removals bathtubs are
real, explainable events that can be treated by correcting the data for the trend.
Treating them improves the predictive accuracy of each of the models we studied.
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In the course of this study, we found that loading (cargo or weapons configura-
tion) may have a significant effect on removals. The C—17s currently stationed at
McChord Air Force Base show significantly fewer landing-induced removals than
the entire fleet. This finding appears to be attributable, at least in part, to an in-
tense period of training with reduced loads. The C—17 maintenance chief con-
curred with this conclusion. Furthermore, the F-16 maintenance contact with
whom we spoke suggested that the choice of weapons configuration may affect
removals.

On the basis of these findings, the most important conclusion we draw from this
investigation also is the most obvious: A physics-based model works better than a
proportional model. It is more accurate and more robust than the proportional
model, and it works on relatively recent data (Operation Allied Force) as well as
relatively old data (Operation Desert Storm).
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Chapter 6

This report clearly shows that the physics-based model provides a more robust
and reliable means of predicting material consumption under all flying conditions.
With additional investigation, we should be able to identify new sources of re-
moval-causing failures and understand current sources better. Implementing a
spreadsheet model that automates the tasks of gathering required data from the
REMIS system and generating projected costs and parts quantities for a given
fleet of aircraft also should be useful.

Before we can implement an automated model, we must first fully confirm our
assumption that the model’s inputs can be accurately forecast. We know that the
Air Force currently predicts flying hours with a reasonable degree of confidence;
otherwise, implementing flying hour-based proportional models would be impos-
sible. We should investigate not only whether we can predict the other model in-
puts with a comparable level of confidence but also the difficulties associated
with making those predictions.

An automated model also requires an automated means of predicting costs on the
basis of removals data that the model generates. In this report, we have estab-
lished a framework for predicting costs on the basis of removals. In future work,
we should implement this framework to determine the difficulties that exist and
the level of accuracy we can expect.

The physics-based model is easy to use and understand because it requires only
four input parameters. The current model, however, may ignore other events that
could be significant sources of removal-causing failures. For example, accelera-
tions above a certain g-force or going to afterburners may cause significant stress
cycles on an aircraft. Now that the validity of the basic physics-based model has
been verified, investigating whether the inclusion of such data will improve the
model or simply add unnecessary complexity should be instructive.

Applying the model in more detail also would be helpful. F-16C data from Avi-
ano Air Base differ significantly from full-fleet data: The Aviano subset does not
have a removals bathtub, but the full fleet does. How much variability exists be-
tween similar aircraft stationed at different bases? Does the ground environment
differ significantly? Are landings noticeably more stressful on aircraft at one base
than at another? How does a change in cargo loading or weapons configuration
affect the likelihood of removals? Now that we know that the model is valid in
general, we can use it to investigate some of these questions.
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We also must consider a more detailed investigation into the removals bathtub
itself. Is a shear transformation based on a straight line acceptably accurate in all
cases, or did it just happen to perform well for the cases we investigated here?
What is the true nature of the curve? Is it a set of exponential curves or something
else? We also should consider whether we can predict when this phenomenon
transitions from a lowering trend to a steady trend and then again from a steady
trend to a rising trend.

The logical next step is to create a software application that automates the tasks of
obtaining input data, calibrating the model, and investigating the results. LMI has
successfully developed several such applications to support other analyses. The
conceptual framework of such a tool would be simple; it would have the same
form of the spreadsheets and graphs that we already have developed for this proj-
ect. The analysis spreadsheet would have to be generalized so that it could accept
a user-specified calibration set and so data for different aircraft could be swapped
into and out of the spreadsheet automatically. This application also would require
the capability to automatically upload and preprocess data from its designated
source.
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Appendix

Calibrating the Model

To calibrate our model, we generate maximum-likelihood estimators of
A 7 »Poc» Poc » and Py, . That is, we choose values for those parameters that maxi-

mize the likelihood of an observed sequence of replacements. Thus, given a set of
M values for replacements r, flight hours FH, ground cycles GC, warm cycles

WC, and cold cycles CC, we choose A, P, P, and Py, to solve

M
max  [[NGsu0),

i= Eqg. A-1
Ar Poc Pec Pyc 1 (Eq ]

where
U, =CC, P +WC, Py, +/1FFH,. +GC, P, [Eq. A-2]

and

0, = 4[CCPec 1= Poe) +WC, Py A= Bye) + A, FH, + GC P (1= P,c) . [EQ-A-3]

Because the variances vary from period to period (i.e., they are intrinsically het-
eroschedastic), this maximization does not reduce to a simple method like linear
regression. It can be done numerically, however. In fact, it can be done on a sim-
ple Excel spreadsheet, using the built-in solver add-on.

To calibrate the model in Excel, the analyst must represent each time interval on a
single row of the spreadsheet (see Table A-1). Eq. A-2 calculates the model mean,
and Eq. A-3 calculates its standard deviation. With these numbers, the user can
use the NORMDIST function in Excel to calculate a probability that the model
coefficients are correct given the mean and the actual removals. To compute the
most likely set of model coefficients, the analyst must compute the cumulative
probability of the entire data set by multiplying the individual probabilities to-
gether and varying the coefficients to maximize the result.




Table A-1. Portion of Excel Spreadsheet Used to Calibrate the Model

Model
Actual Model Model standard Cumulative
removals mean variance deviation Probability probability
153 319.6706 310.7993 17.6295 8.834E-22 8.834E-22
234 294.8028 286.357 16.92209 | 3.70685E-05 | 3.27463E-26
231 345.4027 336.8391 18.35318 | 7.94115E-11 | 2.60043E-36
254 274.6983 265.9526 16.30805 | 0.010932194 | 2.84284E-38
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